

fullmo Kickdrive Developer's Documentation:
Python Automation Scripts and Remote Control

Kickdrive Version 1.9.48
Date: 2013-07-31
Author: O.Heggelbacher
Copyright 2013 www.fullmo.de , www.fuh-edv.de, All Rights Reserved

CONTENTS
Notes 1
Kickdrive Automation / Python API 2
Kickdrive Remote Control 4
KickModCanOpenGateway - CANopen functionality 6
KickMessage – Message Format Overview 11
Public Types 11
Detailed Description 11
Member Enumeration Documentation 11

[bookmark: _Toc328379196]Notes
· The following documentation contains parts of the original Kickdrive source code documentation, and may contains references or labels that refer to internal C++ programming details, e.g. C++ class name. These are not relevant for the Kickdrive Automation / Remote Control interfacing.
· This Microsoft Word Document was generated using a document generator tool (Doxygen), and may contain minor formatting issues especially when describing parameter lists and string formats used.

[bookmark: _Toc328379197]Kickdrive Automation / Python API
[bookmark: _Toc323799614]This module is used to create and run Python script code that can communicate with other Kickdrive modules (e.g. CANUSB interface, or a CANopen drive object) via KickMessage objects that are converted from/to a simple text string.
Since every GUI panel communicates with such messages, everything that is available in a user dialog (testing drive modes, uploading new firmware, ...) can be automated using a Python script.
For getting started with your own automation script, do the following:
Open a predefined Automation example project, e.g. "demo_automation.kicktpl"
Change to User Level = 2
· Go to the "Setup" panel of the Kickdrive Automation module.
· Press "Listen" to get a display of the ongoing communication between modules.
· Activate "Don't add KM_STATUS messages" to avoid your display being filled with periodical status information from all modules.
· Do some manual configuration (e.g. download a new firmware into your CANopen drive)
· Have a look at the logged KickMessage objects. Especially watch out for lines that say "GUI ->" - these are the original UI messages that triggered / started the action, e.g. a "KM_DRIVE_DOWNLOAD_START" message to initiate a drive firmware update.
Before executing the first line of the Kickdrive automation script code, a Kickdrive-specific Python module called "Kickdrive" needs to be imported that provides two new functions:
KickSendMsg("<recipient>:<msgType>:<msgState>[:<msgData>]", "<flags>")
[bookmark: _Toc323799615]Sends new KickMessage to one or several Kickdrive modules (CanUSB, drives, ..)
Parameters:
	<recipient>
	The label of the KickModule that should process this event, e.g. "canopen_gateway" for CANopen SDO talks, or "CANopen Drive 1" for controlling the drive like in the drive setup panel. If empty, the message is sent to all modules.

	<msgType>
	Kickdrive message type, e.g. KM_COMM_OPEN

	<msgState>
	Kickdrive message state, usually KS_REQUEST for a new request

	<msgData>
	Optional data parameter needed for this request, See the KickMessage.h documentation for a list of available messages and their parameters

	<flags>
	Optional string flags:
"w": wait for an answer to this message. NOTE: Not all KickMessages are answered by all slave types. Sometimes a slave just takes a request and runs, without sending the message with state KS_ANSWER back. If in doubt, use the "Listen" function in Kickdrive Automation to find out if a slave actually does or does not respond.
"b" : same as w, but the return value is not the whole message, but only a boolean integer that indicates if the request was returned with success (1) or it failed (0)

Returns:
return value is an empty string, if no optional <flags> were specified. Return value is the complete answer message, if "w" was specified for <flags>. Return value is 1 (success) or 0 (failure), if "b" was specified for <flags>.

KickWaitMsg("<msgWithWildcards>", <timeoutInt>)
[bookmark: _Toc323799616]Waits for a specific message from one or several Kickdrive modules
Parameters:
	msgWithWildcards
	
empty : wait until timeout
"*" : wait for any message
non-empty : wait for a matching message, e.g.
KickWaitMsg("CAN USB 1:KM_STATUS:KS_INFO:0") --> wait for a status code 0 (idle) from the CANUSB interface
answer = KickWaitMsg("*:KM_CANOPEN_EMERGENCY:*", 10000) --> wait for any CANopen emergency, use 10 seconds timeout. <answer> contains all emergency details (see KickMessage.h for the KM_CANOPEN_EMERGENCY syntax)

	timeoutInt
	integer with timeout in milliseconds. If not specified, KickWaitMsg waits until a matching message is received.

Returns:
return value is the matching message. If timed out and no matching message was received, return value is and empty string.

Example code in Python
[bookmark: _Toc323799617]
import Kickdrive
from Kickdrive import *

start CAN interface
answer = KickSendMsg(":KM_COMM_OPEN:KS_REQUEST", "w")
after successfully opening the CAN USB port, <answer> contains
":KM_COMM_OPEN:KS_ANSWER:"
after failing to open the port, <answer> contains
":KM_COMM_OPEN:KS_FAIL:"

set the node id for the "CANopen Drive 1" object in the project tree
KickSendMsg("CANopen Drive 1:KM_SETPROPERTY:KS_REQUEST:NodeId=1", "")

initiate script download. Use "b" syntax to get a boolean integer to indicate success
success = KickSendMsg("CANopen Drive 1:KM_DRIVE_DOWNLOAD_START:KS_REQUEST:s,D:/temp/demo_links_rechtlauf.pymbin", "b")
if success:
 KickSendMsg(":KM_INFOTEXT:KS_INFO:Script download started successfully")
 KickSendMsg(":KM_STATUS:KS_INFO:1")
 KickWaitMsg("", 1000)
else:
 KickSendMsg(":KM_INFOTEXT:KS_INFO:Script download could not be started")
 KickSendMsg(":KM_STATUS:KS_INFO:2000")
 KickWaitMsg("", 5000)
[bookmark: _Toc328379198]Kickdrive Remote Control
[bookmark: _Toc323801019]The Kickdrive application can be remote controlled. You can use the KickModRemoteControl module in Kickdrive to activate a TCP server port which receives (and responds with) KickMessage objects in plain text format. This is simular to the KickSendMsg and KickWaitMsg mechanism used in the Kickdrive Automation / Python API (see Kickdrive Automation / Python API).
For getting started with Remote Control, we recommend the following:
· Find out about the relevant KickMessage objects, as described in the Kickdrive Automation section (see Kickdrive Automation / Python API).
· At the Remote Control "Connection" text field, enter SERVER: and the TCP port to use. You can simply accept the default TCP server port displayed, e.g. "SERVER:51111".
· Start Remote Control
· Now use a TCP client (e.g. the Docklight Scripting development tool) to connect to this server and send text messages in the format specified below.
[bookmark: AAAAAAABRJ]Remote Control Message format <recipient>:<msgType>:<msgState>[:<msgData>]
[bookmark: _Toc323801020]The TCP message format is basically the same format as used for the Kickdrive Automation / KickSendMsg API (see Kickdrive Automation / Python API). Use <LF> (character code 0x0A) for line breaks. To mark the end of a message, use two line breaks in a row <LF><LF>, i.e. an extra empty line.
Example message: Open any communication device (e.g. CANUSB)
:KM_COMM_OPEN:KS_REQUEST<LF><LF>
Example message: initiate script download for the drive object named 'CANopen Drive'
CANopen Drive:KM_DRIVE_DOWNLOAD_START:KS_REQUEST: s,D:/temp/demo_links_rechtlauf.pymbin<LF><LF>

[bookmark: _Toc328379199]KickModCanOpenGateway - CANopen functionality
KickModCanOpenGateway - implements some basicCANopen application protocol layer behavior.
A KickModCanOpenGateway object waits on the slave side for a KickMessage::KM_INTERVIEW request with a CANopen protocol question. It translates it into the CAN telegrams required, sends out the neccessary KickMessage::KM_INTERVIEW requests on the master side and waits for the answer. After completed, it translates this back into the CANopen answer and sends the completed KickMessage::KM_INTERVIEW back on the slave side. KickModCanOpenGateway is far from being a complete CANopen stack, it just does a minimum translation between CANopen and CAN frames and ignores most exceptions, errors and special situations.
[bookmark: AAAAAAABPE]KickModCanOpenGateway KM_INTERVIEW messages
[bookmark: _Toc323801001]Supported KickMessage::KM_INTERVIEW commands when in "Operating" mode. (See the KickInterview class for general documentation about what a Kickdrive interview is)
[bookmark: AAAAAAABPF]SDOWriteObject
[bookmark: _Toc323801002]Expedited SDO download for a canunsigned32 ... cansigned8 value question syntax:
<nodeId>,<index>,<subindex>,<dataType>,<value>
 <dataType> can be unsigned32,integer32,unsigned16,...,integer8. returned answer syntax:
<nodeId>,<index>,<subindex>[,<error message>, if not successful]

Example interview: "set velocity of can node 2f (hex) to 2000 (decimal). Use 1000 milliseconds timeout and don't retry"
SDOWriteObject:1000:0:2fh,6081h,0h,integer32,2000
 Example interview result (everything's fine)
SDOWriteObject:1000:0:2fh,6081h,0h,integer32,2000:2fh,6081h,0h,ok
 Example interview result (error)
SDOWriteObject:1000:0:2fh,6081h,0h,integer32,2000:2fh,6081h,0h,error code 6010001h
 (In addition, the message state of the KickMessage::KM_INTERVIEW message will be KickMessage::KS_FAIL)
[bookmark: AAAAAAABPG]SDOReadObject
[bookmark: _Toc323801003]SDO upload request for a canunsigned32 ... cansigned8 value question syntax:
<nodeId>,<index>,<subindex>,<dataType>
 returned answer syntax:
<nodeId>,<index>,<subindex>,<dataType>,[<value>|<error message>]
 <dataType> can be unsigned32,integer32,unsigned16,...,integer8 and visible_string
Example interview: "get device type of can node 1. Use 500 milliseconds timeout and two retries"
SDOReadObject:500:2:1h,1000h,0h,unsigned32
 Example interview result (everything's fine)
SDOReadObject:500:2:1h,1000h,0h,unsigned32:1h,1000h,0h,unsigned32,131474
 Example interview result (error, plus KickMessage state is KickMessage::KS_FAIL)
SDOReadObject:500:2:1h,1000h,0h,unsigned32:1h,1000h,0h,unsigned32,error code 6010001h

[bookmark: AAAAAAABPH]LSSNodeParameters
[bookmark: _Toc323801004]Set device node id and/or baud rate, using LSS Configuration Mode question syntax:
<selectionMode>,<selectionID>,<newNodeId>,<newBaudRate>

Parameters:
	<selectionMode>
	is a character: g = global, v = vendor id, p = product code, r = revision, s = serial number.

	<selectionID>
	the specific vendor Id, product code, ... as an unsigned32. Not used for g = global.

	<newNodeId>
	new ID between 1 and 127, or zero if no change.

	<newBaudrate>
	new CAN baud rate, or zero if no change.

returned answer syntax:
<selectionMode>,<selectionID>,<newNodeId>,<newBaudRate>,[ok|<error message>]

Example interview: "change node ID of device with serial number 7A651273 (hex) to 2"
LSSNodeParameters:5000:0:s,7A651273h,2,0
 example interview answer - everything's fine:
LSSNodeParameters:5000:0:s,7A651273h,2,0:ok

Example interview: global request (changes first node found to ID = 63)
LSSNodeParameters:5000:0:g,0,63,0

Example interview answer - error,
LSSNodeParameters:5000:0:g,0,63,0:error
 (plus KickMessage state is KickMessage::KS_FAIL)
[bookmark: AAAAAAABPI]SDODownload
[bookmark: _Toc323801005]CANopen domain download: Transfer the specified data to the CAN client, using either SDO segmented transfer or SDO block transfer question syntax:
<nodeId>,<index>,<subindex>,<flags>,<blockSize>,<retries>,<data>

Parameters:
	<blockSize>
	if <> 0, the transfer is split into individual sessions of <blockSize> bytes.

	<retries>
	number of retries for an individual block

	<data>
	the download data in QByteArray hex string representation, or the path to the binary file to be used.

	<flags>
	A combination of the following letters

· b : (block) if set, use CANopen block transfer, instead of segmented transfer (segmented is default)
· f : (file) if set, the <data> section contains a file path to a raw binary file with the actual data NOTE: every colon (":") of a file path must be replace by ";", since ":" is already the separator for the interview syntax
· a : alignment - if <sessionSize> is used, even the very last transfer contains <sessionSize> bytes. a zero byte is used for padding.
· n : name field - prepend the binary download data with a 16 bytes name field containing the file name, or 'Untitled' if no file is provided
· s : use simplified handshake and only wait for confirmation at each download session end. This is to work around USB latency times and increase data throughput
· l : this is a application binary download where the .bin file consists of a number of blocks units with the following structure:
<block size 32bit><start address 32bit><data size 32bit>
1 .. <data size> bytes
<block crc 32bit>
·
	

SDODownload returns immediately after successfully initializing the download. Progress, success or failure is reported using the KickMessage::KM_PROGRESS message.
You can tell that a download has been completed when you are receiveing a KickMessage:KM_PROGESS message with integer value 100 (100% complete). If this message has status KickMessage::KM_ANSWER, the download completed successfully, otherwise it failed or has been canceled.
returned answer syntax:
<status message>

Example interview
SDODownload:0:0:1,2f50h,2,fhn,0,0,d;/test1.bin
 example interview result (everything's fine. Initialized and download in progress)
SDODownload:0:0:1,2f50h,2,fhn,0,0,d;/test1.bin:initialized
 Example interview result (error)
SDODownload:0:0:1,2f50h,2,fhn,0,0,d;/test1.bin:error - no data / file not found

[bookmark: AAAAAAABPJ]SDOAbortDownload
[bookmark: _Toc323801006]Abort pending download with error code 08000000h General error Returned answer syntax: (empty string)
Example interview
SDOAbortDownload:0:0:0,2f50h,2

[bookmark: AAAAAAABPK]ScanIds
[bookmark: _Toc323801007]Get all node ids available on the bus using SDO Read commands for a default object 0x1000 (Device Type) question syntax:
 returned answer syntax:
<id1>,<id2>,<id3>,... ,<idn>
<deviceType1>,<deviceType2>,<deviceType3>, ... <deviceTypeN>,
 Example interview:
ScanIds:0:0
 Example interview result where three node ids of same device type (01ff0123h) have been detected: 1, 5, 10.
ScanIds:0:0::1,5,10
01ff0123h,01ff0123h,01ff0123h

[bookmark: AAAAAAABPL]NmtNode
[bookmark: _Toc323801008]Execute a NMT Module Control Command question syntax:
<nodeId>,<CS Byte>
 returned answer syntax:
noresponse
 Example interview: Reset communication for all nodes
NmtNode:500:0:0,82h
 The NMT commands are not committed. Simply waits for the timeout and returns.
NmtNode:500:0:0,82h:noresponse

[bookmark: AAAAAAABPM]Additional KickModCanOpenGateway KS_INFO messages
[bookmark: _Toc323801009]Additional KickMessage::KS_INFO messages which KickModCanOpenGateway sends automatically when in "Operating" mode
[bookmark: AAAAAAABPN]KM_CANOPEN_BOOTUP
[bookmark: _Toc323801010]bootup message detected. Returns the corresponding <nodeID> as integer argument.
[bookmark: AAAAAAABPO]KM_CANOPEN_EMERGENCY
[bookmark: _Toc323801011]emergency message detected. Returns a string with the following format:
<Node ID>,<Error Code>,<Error Register>,<manufacturer data As Hex>

[bookmark: _Toc328379200]KickMessage – Message Format Overview
[bookmark: _Toc320136740][bookmark: _Toc323799386][bookmark: AAAAAAABJN]
A messaging class for communication between KickModule and KickPanel objects.
[bookmark: _Toc328379201]Public Types
enum KickMessageType { KM_UNDEFINED, KM_WHOAMI, KM_GETPROPERTY, KM_SETPROPERTY, KM_GETALLPROPERTIES, KM_STATUS, KM_INFOTEXT, KM_INTERVIEW, KM_CANCEL_INTERVIEWS, KM_SNIFFER_SET, KM_SNIFFER_MSG, KM_PROGRESS, KM_PREPARE_TO_SAVE, KM_DROP_DATA, KM_START, KM_STOP, KM_APPLICATION_CONTROL, KM_COMM_OPEN, KM_COMM_CLOSE, KM_COMM_STATUS, KM_COMM_SET_BAUD, KM_CAN_FRAME, KM_PLAYERCMD_PLAY, KM_PLAYERCMD_STOP, KM_PLAYERCMD_PAUSE, KM_PLAYERCMD_SKIP, KM_PLAYERCMD_BACK, KM_PLAYER_STATUS, KM_DRIVE_START, KM_DRIVE_STOP, KM_DRIVE_STATUS, KM_SET_PROFILE_MODE, KM_GET_ACTUAL_VELOCITY, KM_GET_ACTUAL_POSITION, KM_DRIVE_NEW_ID, KM_DRIVE_NEW_COMM_PARAMETERS, KM_DRIVE_RESET, KM_DRIVE_GO_TO_TARGET, KM_DRIVE_GO_TO_EXTENDED, KM_DRIVE_START_HOMING, KM_DRIVE_DOWNLOAD_START, KM_OBJLIST_WRITE, KM_OBJLIST_READ, KM_DIALOG, KM_ASSIGN_SLAVES, KM_NEW_POSITION_RUN, KM_CANOPEN_BOOTUP, KM_CANOPEN_EMERGENCY, KM_DAQ_DATA, KM_DAQ_CONFIG, KM_DAQ_RECORD_START, KM_DAQ_RECORD_STOP, KM_DAQ_RECORD_PAUSE, KM_DAQ_RECORD_RESUME, KM_DAQ_LOAD_FILE, KM_DAQ_SHARED_IDS_LIST, KM_DAQ_CLEAR, KM_SCRIPT_CONTROL, KM_SCRIPT_MSG, KM_AUTOMATION_SNIFFER_MSG, KM_MASTER_OUT }
KickMessageType enum - message types supported. enum KickMessageState { KS_INFO, KS_REQUEST, KS_WAITING, KS_ANSWER, KS_REJECT, KS_FAIL, KS_TIMEOUT, KS_CANCEL }

[bookmark: _Toc328379202]Detailed Description
A messaging class for communication between KickModule and KickPanel objects.
KickMessage is used for message objects that are passed between the various GUI Panels and managers. The message content is flexible to a maximum degree. It is not intended to define a strict protocol for in-process communication, but rather a flexible object to communicate anything from a plain string to more complex data structures

[bookmark: _Toc328379203]Member Enumeration Documentation
enum KickMessage::KickMessageState
[bookmark: AAAAAAABLW]
KickMessageState.
Each message can have different states that will change during the lifetime of a message object
Enumerator:
[bookmark: AAAAAAABLX]KS_INFO Informational message that does not require action
[bookmark: AAAAAAABLY]KS_REQUEST Request for information or command.
[bookmark: AAAAAAABLZ]KS_WAITING (still) waiting for an answer
[bookmark: AAAAAAABMA]KS_ANSWER This is a former request that turned into an answer now
[bookmark: AAAAAAABMB]KS_REJECT This request is not supported and rejected
[bookmark: AAAAAAABMC]KS_FAIL This is a failed request (e.g. an error occurred)
[bookmark: AAAAAAABMD]KS_TIMEOUT This is a timed out request that could not be answered
[bookmark: AAAAAAABME]KS_CANCEL request has been canceled
enum KickMessage::KickMessageType
[bookmark: AAAAAAABMF]
KickMessageType enum - message types supported.
The KickMessageType enum This is a central place to define any type of message that is supported, just to be able to tell them apart. Indidividual classes can still agree on how these telegrams really work, e.g. what type of parameters they read.
Enumerator:
[bookmark: AAAAAAABMG]KM_WHOAMI WHOAMI request: returns a multiline string containing
<type>
<label>
<description>

[bookmark: AAAAAAABMH]KM_GETPROPERTY KM_GETPROPERTY: get a property value.
Request data: <propertyName> as string.
Answer data: A string with format <propertyName>=<propertyValue>
KM_GETPROPERTY messages are handled by the KickModule base class code. After being answered, a KM_GETPROPERTY or KM_GETALLPROPERTIES message always has the "origin" property changed to the module that actually contains the property, not the original caller that issued the KM_GETPROPERTY or KM_GETALLPROPERTIES call. This is useful for identifying a property value with the actual KickModule it comes from.
[bookmark: AAAAAAABMI]KM_SETPROPERTY KM_SETPROPERTY: set a property value.
Request data: <propertyName>=<propertyValue>
Answer data: <propertyName>=<propertyValue>
KM_SETPROPERTY messages are handled by the KickModule base class code.
[bookmark: AAAAAAABMJ]KM_GETALLPROPERTIES KM_GETALLPROPERTIES: returns all properties available as a multiline string.
Answer data:
<propName1>=<propValue1>
<propName2>=<propValue2>
...
<propNameN>=<propValueN>
 KM_GETALLPROPERTIES messages are handled by the KickModule base class code.
[bookmark: AAAAAAABMK]KM_STATUS KM_STATUS: periodical information message with the KickModule's status.
0 - Idle, 1-999 operational, 1000-1999 warning, 2000-2999 error. See also the defined below
[bookmark: AAAAAAABML]KM_INFOTEXT KM_INFOTEXT: text messages, e.g. errors or status messages.
[bookmark: AAAAAAABMM]KM_INTERVIEW KM_INTERVIEW: Question + expected answer for an application layer protocol, e.g. CAN or CANOpen.
An interview request consists of a question (a protocol message to sent to a device, like "what is the current position?") and a definition for an expected answer, which can also include wildcards for expected return values.
Parameter for a KM_INTERVIEW is a string with the following syntax:
<type>:<timeout>:<retry>:<questionString>:<expectedAnswer>
<interviewType> - e.g. "CAN", "SDOWriteObject", depending on what the KickModule object supports
<timeout> - 0 = no timeout or >0 = timeout in milliseconds
<retry> - what to do if request timed out: 0 : return with failure, greater than 0 : retry <x> times. smaller than 0 : retry infinitively.
<questionString> = the protocol request
<expectedAnswer> = optional. the expected answer (may include wildcards like * or ?). If <expectedAnswer> is "noresponse", the interview simply waits until timed out and returns success
After sending the protocol request and receiving a matching answer, <expectedAnswer> is replaced by the actual data and the message is returned to sender with the new state KS_ANSWER.
Example interview:
CAN:1000:1:7e5h,8,17 01 00 00 00 00 00 00:7e4h,8,17*
 Example interview after completion and sending back to origin:
CAN:1000:1:7e5h,8,17 01 00 00 00 00 00 00:7e4h,8,17 00 00 00 00 00 00 00
An interview can also contain several questions in several lines of text that are asked one by one. If one question fails / times out, the whole interview fails, unless the first interview line says "OnErrorContinue:".
Example interview:
OnErrorContinue:
SDOWriteObject:1000:2:127,6085h,0h,integer32,1000
SDOWriteObject:1000:2:127,4000h,1h,unsigned8,0
SDOWriteObject:1000:2:127,4000h,4h,unsigned8,5
The return result will then contain the amount of failed / succeeded requests:
OnErrorContinue:2:1
SDOWriteObject:1000:2:127,6085h,0h,integer32,1000,ok
SDOWriteObject:1000:2:127,4000h,1h,unsigned8,0,error
SDOWriteObject:1000:2:127,4000h,4h,unsigned8,5,ok
KM_INTERVIEW messages are handled by the KickModule base class code. See the KickInterview class for additional documentation
[bookmark: AAAAAAABMN]KM_CANCEL_INTERVIEWS KM_CANCEL_INTERVIEWS: all pending interviews are canceled and return with KS_CANCEL state.
If a KM_CANCEL_INTERVIEWS message has the <origin> property set, only the interviews with the same origin are canceled.
[bookmark: AAAAAAABMO]KM_SNIFFER_SET KM_SET_SNIFFER: 1 - enabled sniffer. 0 - disable.
Enabled/disable sniffer mode where all master out/in messages, plus any GUI signal are translated to an text message for debugging purposes
[bookmark: AAAAAAABMP]KM_SNIFFER_MSG KM_SET_SNIFFER_MSG: The result of the sniffing is posted on the slaveOut side.
[bookmark: AAAAAAABMQ]KM_PROGRESS a progress information in % from 0 to 100 for processes that run for a longer time. Finished processes should always return a 100%, and use KS_INFO if the whole operation was successful, and KS_FAIL if there was an error
[bookmark: AAAAAAABMR]KM_PREPARE_TO_SAVE prepare to save project data: Store additional values, if necessary. (no parameters)
[bookmark: AAAAAAABMS]KM_DROP_DATA KM_DROP_DATA is used to send drag&drop data to a KickPanel where a default drop action can be offered even by dropping stuff on the project tree tile or somewhere else outside the KickPanel
[bookmark: AAAAAAABMT]KM_START KM_START / KM_STOP: every module should usually support a general start and stop command.
for each module there is many times also a specific command, e.g. "start drive" The general KM_START / KM_STOP message has the same effect, but it never takes a parameter and it is used by the GUI as a general way to bring a module into "started" mode.
Note:
Currently only supported by KickModNode, KickModCanInterface and KickModDataLog
[bookmark: AAAAAAABMU]KM_APPLICATION_CONTROL KM_APPLICATION_CONTROL: Application level operations.
Used to perform application-level operations which are also available through the user interface They can be sent by any active KickPanel. KickPanels are automatically connected to the Kickdrive msgIn slot KM_APPLICATION_CONTROL has string argument with format <cmd>,<argument>, where <cmd> is
"new": create a new project, <argument>provides the template .kicktpl file to use
"open": string argument is the path to open. If empty, a dialog is used
"save": save with current file path/name.
"saveas": string argument for the save path. If empty, regular "save project" is used
"panel": opens the display panel named <argument>. Like clicking on a project tree element.
"exit": quit application
[bookmark: AAAAAAABMV]KM_COMM_OPEN KM_COMM_... KickModCanInterface messages supported.
open CAN interface / communication device
[bookmark: AAAAAAABMW]KM_COMM_CLOSE close CAN interface / communication device
[bookmark: AAAAAAABMX]KM_COMM_STATUS info message, returns integer bit value: 1 - TX data, 2 - RX data, 4 - ERROR, 8 - BUS ERROR
[bookmark: AAAAAAABMY]KM_COMM_SET_BAUD sets the baudrate. Identical to setting the CANINTERFACE_SETTINGS_BAUD property, but can be tunneled through the canOpen gateway. Only works in IDLE mode
[bookmark: AAAAAAABMZ]KM_CAN_FRAME KM_CAN_FRAME: a CAN frame to be transmitted (KS_REQUEST) or received (KS_INFO)
The CAN interface accepts KM_CAN_FRAME / KS_REQUEST and transmits them. The data format is a QByteArray with size 16 that is a 1:1 mapping of the VSCAN_MSG data structure (we need to use QByteArray as a valid subtype for QVariant. Cannot do this with a custom struct.) the CAN interface returns this message with state KS_ANSWER, if successful, or KS_FAIL if failed to transmit The CAN interface will post all CAN frames received as a KM_CAN_FRAME / KS_INFO automatically
[bookmark: AAAAAAABNA]KM_PLAYERCMD_PLAY KM_PLAYER_CMD... : player control (start, stop, pause...) e.g. used for the CAN Sender.
KM_PLAYERCMD_PLAY arguments are either:
an integer no. with the CAN sender program no. from 0 to 9
a string "<programNo>,<initCode>", where <programNo> is the integer program no., and <initCode> is some macro code that should be executed before the first program line, e.g. for initializing some variables.
[bookmark: AAAAAAABNB]KM_PLAYER_STATUS info message from the player: reports the current line no. processed. -1 = program ended
[bookmark: AAAAAAABNC]KM_DRIVE_START KM_DRIVE_START and other messages the KickModPosDrive accepts from a GUI panel.
put a drive into operational mode
[bookmark: AAAAAAABND]KM_DRIVE_STOP stop a drive
[bookmark: AAAAAAABNE]KM_DRIVE_STATUS periodic KS_INFO sent. Returned status is in Hex 16 bit format
[bookmark: AAAAAAABNF]KM_SET_PROFILE_MODE put in profile velocity mode (integer argment = 3), position mode (1) or homing mode (6)
[bookmark: AAAAAAABNG]KM_GET_ACTUAL_VELOCITY returns the actual velocity as long int
[bookmark: AAAAAAABNH]KM_GET_ACTUAL_POSITION returns the actual drive position as a scaled float value
[bookmark: AAAAAAABNI]KM_DRIVE_NEW_ID KM_DRIVE_NEW_ID: set a new (CAN) ID. Only when drive stopped.
Argument is string with format <newNodeId>[,<deviceSerialNo>]
if the optional <deviceSerialNo> is missing or zero, a LSS Switch Global is used and every CAN node in the CANopen net will respond to the Node ID change
If <deviceSerialNo> is > 0, a LSS Switch Selective for this specific device serial no. is used
If <deviceSerialNo> is "read", the drive module reads out its serial no. first, then it changes the node ID using this serial no. .
[bookmark: AAAAAAABNJ]KM_DRIVE_NEW_COMM_PARAMETERS set a new baud rate. Only when drive stopped. Argument is string with format <newBaudRate>[,<deviceSerialNo>]
[bookmark: AAAAAAABNK]KM_DRIVE_RESET KM_DRIVE_RESET: Perform different reset operations.
int parameter to specifiy reset mode:
1 : restart application firmware
2 : reset parameters to factory settings
[bookmark: AAAAAAABNL]KM_DRIVE_GO_TO_TARGET KM_DRIVE_GO_TO_TARGET: starts positioning.
Optional int parameter to specify position mode:
1 : new set point & start
2 : new set point & halt
3 : halt
4 : release after halt
target velocity and limits are set before as drive properties (see KM_SETPROPERTY)
[bookmark: AAAAAAABNM]KM_DRIVE_GO_TO_EXTENDED KM_DRIVE_GO_TO_EXTENDED: extended positioning command where target postion and all additional parameters are.
extended positioning command where target postion and all additional parameters are specified through the following, comma-separated argument list:
<targetPos>,<flags>,<velocity>,<acceleration>,<deceleration>
<targetPos>: new end position (float)
<flags>:
't' - require that 'target reached' status bit is set before setting a position. If 'target reached' is not set, this message returns with "KS_FAIL" state.
'i' - monitor 'target reached' during positioning and report back, when target is reached with another KM_DRIVE_GO_TO_EXTENDED message with status "KS_INFO" and text "target reached".
<velocity>,<acceleration>,<deceleration>:
optional integer ramp parameters. Only used if > 0.
KM_DRIVE_GO_TO_EXTENDED always reads the drive's status word as a first step and checks if the drive is still busy. If flag 't' (target reached) is not set, the message is returned with KS_CANCEL status, and the new target is not set.
After accepting the positioning command, the drive returns KM_DRIVE_GO_TO_EXTENDED with status KS_ANSWER
If the flag 'i' is set, KM_DRIVE_GO_TO_EXTENDED is answered a second time with status 'KS_INFO' and data string "target reached" after the drive reached the target position.
[bookmark: AAAAAAABNN]KM_DRIVE_START_HOMING KM_DRIVE_START_HOMING: starts homing procedure or sets new actual position to zero (homing mode 35)
Int parameter to specify homing mode:
1 - 34: start homing procedure 1..34
35: set new home position (set actual position to zero)
[bookmark: AAAAAAABNO]KM_DRIVE_DOWNLOAD_START KM_DRIVE_DOWNLOAD_START: download and run a new python script or firmware.
String parameter to specifiy the download:
<downloadType>,<downloadBinaryPath>
<downloadType> = s: stops the running script, loads the script from the raw binary file path in the argument, and starts the new script.
<downloadType> = f: switch to bootloader, download a new application firmware from the binary specified, and restart the application code.
<downloadType> = b: same as 'f', but use CANopen block transfer mode, if available
Use KM_DRIVE_STOP to cancel any running download and go back to idle
[bookmark: AAAAAAABNP]KM_OBJLIST_WRITE KM_OBJLIST_WRITE: writes a list of parameters, passed as a string.
new standard format:
<dataObjectId 1>,<valueType 1>,<value 1> # <optional comment, e.g. the attribute's real world name>
<dataObjectId 2>,<valueType 2>,<value 2>
...
<dataObjectId n>,<valueType n>,<value 3>
 <dataObjId> format as defined in KickBabelFish::dataObjectId(..):
<nodeId>.<indexHex>h.<subindex>h
 with fixed length numbers,
003.107fh.02h
For <value> you can use decimal values, or hex values in the format "0x1af" or "1afh",
or even bit values in the format "0b10110111".

Older format for compatibility:
<attributes 1>,<index 1>,<subindex 1>,<valueType 1>,<value 1> # <optional comment>
<attributes 2>,<index 2>,<subindex 2>,<valueType 2>,<value 2>
...
<attributes 3>,<index 3>,<subindex 3>,<valueType 3>,<value 3>

<attribute>: accessibility attributes like "rw", "ro", "wo", "const"
In addition, the KickModNode class that implements KM_OBJLIST_WRITE behavior also supports passing the following text macros instead of a parameter line:
"StoreCmd" : send command to make the object values permanent or
"ResetCmd" : reset to factor settings.
See KickModNode header for details
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: AAAAAAABNQ]KM_OBJLIST_READ KM_OBJLIST_READ: read new object values for a list with the same format as for KM_OBJLIST_WRITE. The actual value is always returned in decimal format.
[bookmark: AAAAAAABNR]KM_DIALOG Message boxes - use the following string argument:
<type>,<message>,<default>
<type> = "s": ask for string input value. Return message state is KS_ANSWER, if ok, KS_CANCEL if user canceled
<type> = "i": information box with OK / Cancel. Return message state is KS_ANSWER, if ok, KS_CANCEL if user canceled
<type> = "w": same as "i", but use warning, not informational, and Cancel is default
File dialogs - use the following string argument
<type>,<caption>,<dir>,<filter>
<type>: "fo" for 'Open File', "fs" for 'Save File'
: The dialog's caption is set to caption. If caption is not specified then a default caption will be used.
<dir>: The file dialog's working directory will be set to dir. If dir includes a file name, the file will be selected. If dir is empty, the last known path from a project open is used. If dir is "%%WorkingDir%%", the path is the current Temp location where a .kickzip project has been extracted to. Or - if you are using a .kickpro file - the regular project path.
<filter>: Only files that match the given filter are shown. If you want multiple filters, separate them with ';;', for example:
"Images (*.png *.xpm *.jpg);;Text files (*.txt);;XML files (*.xml)"

[bookmark: AAAAAAABNS]KM_ASSIGN_SLAVES Messages the KickModXYPos uses to interact with its from a GUI panel.
check the connected slaves for their name, and assign as X axis and Y axis, if necessary.
[bookmark: AAAAAAABNT]KM_NEW_POSITION_RUN started a new positioning run
[bookmark: AAAAAAABNU]KM_CANOPEN_BOOTUP informational messages the canOpen gateway sends
bootup message detected for <nodeID> passed as integer argument
[bookmark: AAAAAAABNV]KM_CANOPEN_EMERGENCY emergency message detected. Returns a string with
<Node ID>,<Error Code>,<Error Register>,<manufacturer data As Hex>
[bookmark: AAAAAAABNW]KM_DAQ_DATA KM_DAQ_DATA - Data Acquisition.
Data Format:
<dataObjId>,<date/time>, <value>
Several measurements can be transmitted in one KM_DAQ_DATA message. Use a line break <LF> character to separate the different lines of data.
The <dataObjId> format is as defined in KickBabelFish::dataObjectId(..):
"<nodeId>.<indexHex>h.<subindex>h"
with fixed length numbers, example: "003.107fh.02h"
[bookmark: AAAAAAABNX]KM_DAQ_CONFIG KM_DAQ_CONFIG - Setup Data Acquisition.
This message represents either a request to monitor data OR an answer to such a request.
The data for a KS_REQUEST looks like:
<dataObjId>,<name>,<dataType>,<method>,<interval>
When confirmed as KS_ANSWER from the data aquiring module (e.g. KickModCanOpenGateway), the data is:
<dataObjId>,<name>,<dataType>,<method>,<interval>,<status:1=success,0=failed>,-1
The KickModDataLog module receives forwards this to its KickPanel ui elements, and tags on the id of the shared data container:
<dataObjId>,<name>,<dataType>,<method>,<interval>,<status:1=success,0=failed>,<sharedDataId>

[bookmark: AAAAAAABNY]KM_DAQ_RECORD_START KM_DAQ_RECORD_START - Starts recording data.
[bookmark: AAAAAAABNZ]KM_DAQ_RECORD_STOP KM_DAQ_RECORD_STOP - Stops recording data.
[bookmark: AAAAAAABOA]KM_DAQ_LOAD_FILE KM_DAQ_LOAD_FILE - Loading a log file of recorded data.
This message represents different states related to loading a log file.
As KS_REQUEST - start loading the file passed as string argument.
As KS_INFO - messages sent from module to notify about progress percent. Data format is:
<total_read_bytes>,<file_size_in_bytes>,<calculated_total_read_percent>

As KS_ANSWER - notifies the panel that file has been loaded and passes the xml file name containing the model data required to reconstruct the data objects:
<data_filename>,<xml_filename>

[bookmark: AAAAAAABOB]KM_DAQ_SHARED_IDS_LIST KM_DAQ_SHARED_IDS_LIST - list of all known shared data objects and their corresponding shared ids.
Data is a multiline string in the following format:
<data_object_id>,<shared_id>
<data_object_id>,<shared_id>
...

[bookmark: AAAAAAABOC]KM_DAQ_CLEAR KM_DAQ_CLEAR - clears measurements and triggers for specified data objects.
Argument is a comma-separated list of data objects to clear:
<data_object_id>,<data_object_id>,<data_object_id>...

[bookmark: AAAAAAABOD]KM_SCRIPT_CONTROL KM_SCRIPT_CONTROL - Controls run/stop states of python scripts.
Data is a string with the following argument format:
<1=Start|0=Stop>[,<scriptCode>]
 Example:
"1" - Start script, using the default script (e.g. as defined by the "ScriptFileName" in KickModAutomation).
"0" - Stop script
Optional arguments are supported for KickModAutomation:
<scriptCode> contains custom Python script code to be executed instead of the default script.
If the <scriptCode> starts with the keyword "append:", the default script is used, and the part after "append:" is appended to it.
Example:
1,append:myFunction(3)

loads the default script and executes the function call myFunction(3).
In this case the default script usually consists of several function definitions without a main().
Note:
KM_SCRIPT_CONTROL replaces the obsolete KM_AUTOMATION_RUN_SCRIPT / KM_AUTOMATION_STOP
[bookmark: AAAAAAABOE]KM_SCRIPT_MSG KM_SCRIPT_MSG - Information regarding script state and runtime errors.
This message represents runtime data from a running python script. The data can be an status/error information reported by the script module (e.g. KickModAutomation), or redirected Python StdOut / StdErr streams.
<line_number>,<runtime_info>

<line_number>: Related line in python code. 0 when line number is unknown or message is not line-specific.
<runtime_info>: Actual data / message to pass on. Additional tokens "StdOut:" and "StdErr:" are used at the beginning of messages that are actual Python StdOut / StdErr texts.
[bookmark: AAAAAAABOF]KM_AUTOMATION_SNIFFER_MSG KM_AUTOMATION_SNIFFER_MSG - Monitored KickMessages picked up by automation, in Listen or Record modes.
[bookmark: AAAAAAABOG]KM_MASTER_OUT KM_MASTER_OUT - take the string argument, convert it into a KickMessage and post it on the module's master side.
This is the basic KickModule command that can be used by KickPanel objects to post stuff to the "outside world" beyond the KickModule the panel is attached to. The string format for the message is "<recipient>:<msgType>:<msgState>:<dataPartAsString>". The origin is set to the origin of the KM_MASTER_OUT message.

[bookmark: _GoBack]Copyright 2013 www.fullmo.de , www.fuh-edv.de, All Rights Reserved				
